Wrinkling and electroporation of giant vesicles in the gel phase†

نویسندگان

  • Roland L. Knorr
  • Margarita Staykova
  • Rumiana Dimova
چکیده

Electric pulses applied to fluid phospholipid vesicles deform them and can induce the formation of pores, which reseal after the end of the pulse. The mechanical and rheological properties of membranes in the gel phase differ significantly from those of fluid membranes, thus a difference in the vesicle behavior in electric fields is expected. However, studies addressing this problem are scarce. Here, we investigate the response of giant gel-phase vesicles to electric pulses and resolve the dynamics of deformation with microsecond resolution. We find that the critical transmembrane potential leading to poration is several times higher as compared to that of fluid membranes. In addition, the resealing of the pores is arrested. Interestingly, the vesicle shapes change from ellipsoidal to spherocylindrical during the electric pulse and the membrane becomes periodically wrinkled with ridges aligned with the field direction and wavelengths in the micrometre range. Such membrane wrinkling has not been reported previously. The corrugations comply with universal laws of wrinkling of surfaces with lengthscale dimensions from nanometres to metres.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Giant vesicles in electric fields

This review is dedicated to electric field effects on giant unilamellar vesicles, a cell-size membrane system. We summarize various types of behavior observed when vesicles are subjected either to weak AC fields at various frequency, or to strong DC pulses. Different processes such as electrodeformation, -poration and -fusion of giant vesicles are considered. We describe some recent development...

متن کامل

Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes.

We present a new way to transport and handle picoliter volumes of analytes in a microfluidic context through electrically monitored electroporation of 10-25 microm vesicles. In this method, giant vesicles are used to isolate analytes in a microfluidic environment. Once encapsulated inside a vesicle, contents will not diffuse and become diluted when exposed to pressure-driven flow. Two vesicle c...

متن کامل

Thermodynamic relaxation drives expulsion in giant unilamellar vesicles.

We investigated the thermodynamic relaxation of giant unilamellar vesicles (GUVs) which contained small vesicles within their interior. Quenching these vesicles from their fluid phase (T > T(m)) through the phase transition in the gel state (T < T(m)) drives the inner vesicles to be expelled from the larger mother vesicle via the accompanying decrease in the vesicle area by approximately 25% wh...

متن کامل

Smooth/rough layering in liquid-crystalline/gel state of dry phospholipid film, in relation to its ability to generate giant vesicles

Morphological changes in a dry phospholipid film on a solid substrate were studied below and above the main transition temperature, between the gel and liquidcrystalline phases by phase-contrast microscopy and AFM. A Phospholipid film in the liquid-crystalline phase exhibits flat, smooth layering, whereas that in the gel phase shows rough, random layering. These film morphologies are discussed ...

متن کامل

Phase transition induced fission in lipid vesicles.

In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>T(m)) through the phase tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010